ALS Therapeutic Programs

Hyperexcitability of the Motor System

Using advanced stem cell technologies, the founders of QurAlis, Professors Kevin Eggan and Clifford Woolf together with Dr. Brian Wainger worked together with ALS patients and reprogrammed some of their skin cells into stem cells. Next, these stem cells were made into the same type of motor neurons that are degenerating in the ALS patients body. This allows us to study the motor neurons in a laboratory setting. A careful examination of these motor neurons showed that they exhibit a similar hyperexcitability as is found in ALS patients. Through careful measurements, Dr. Wainger then identified a decreased activity of a certain potassium channel, the Kv7.2/7.3 channel. This decreased activity of Kv7.2/7.3 made ALS motor neurons hyperexcitable compared to control neurons where the ALS gene mutation in the SOD1 gene have been removed from the DNA. An already approved epilepsy medicine called Ezogabine also known as retigabine was able to restore the activity of the Kv7.2/7.3 channel and reduced the hyperactivity of the motor neurons to normal levels. The medicine was also able to increase the survival of the motor neurons with ALS mutations. Ezogabine/retigabine is now tested in a Phase 2a biomarker trial to confirm that it reduces the hyperactive motor system of ALS patients. If so, it is also possible that it prolongs ALS patient survival.

QurAlis is now developing an even better Kv7.2/7.3 drug that will have less side effects and is more potent for motor neurons specifically. We will do this using the new and very potent molecules that we have identified together with the use of chemistry techniques and our advanced stem cell technology platform and the Q-State optopatch platform to make sure the drug works well for ALS patients specifically.

Precision Medicine Therapy

Geevasinga, N., et al., Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol, 2016. 12(11): p. 651-661.

C9orf72 Clear CSF Device

Westergard, T., et al., Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD. Cell Rep, 2016. 17(3): p. 645-652.

C9orf72 Clear CSF Device

After onset of the disease, ALS progresses rapidly and there are strong indications that the spread of toxic or prion like proteins through the cerebrospinal fluid (CSF) are a major contributor to the disease. C9orf72 patients form the largest group of familial ALS patients (~45%) and 8-10% of sporadic ALS patients. The C9orf72 repeat expansion mutation causes the aberrant production of 5 different dipeptide repeat (DPR) proteins; glycine–alanine (GA), glycine–arginine (GR), proline–arginine (PR), proline–alanine (PA), and glycine–proline (GP)). GA, PR and GR DPR proteins are especially toxic for neurons and are important drivers of neurodegeneration in fly and mouse models of ALS. These toxic DPR proteins are secreted by cells and are present in the CSF of C9orf72 ALS patients. GP is the most studied DPR in the CSF and can function as a pharmacodynamic biomarker because of its high and stable concentration in the CSF. Scientists have shown that DPR’s are transmitted from cell to cell and that this transmission occurs through the CSF. The level of DPR proteins in the CSF is up to 1000-fold higher than that of other relevant proteins such as IGF-1. It is therefore important to get rid of these toxic proteins.

Removal of toxic DPR proteins from the CSF will therefore significantly slow down ALS disease progression of C9orf72 repeat expansion carriers

QurAlis has developed a proprietary method to clear toxic DPR proteins. We are now developing a cartridge which will be incorporated in our Clear CSF device. This device will clear the toxic DPR repeat proteins from the CSF of ALS patients that carry the C9orf72 repeat expansion mutation. To recirculate the CSF safely, a sophisticated pumping system is required for which QurAlis is partnering with other companies that have extensive experience in CSF device development. Our final therapy for ALS patients will be a wearable device like an insulin pump that will continuously clear the CSF from toxic proteins to stop them from harming neurons.

Figure 3. Q-State Biosciences (QurAlis) Program strategy for the development of a CSF clearance device to remove toxic C9orf72 repeat expansion dipeptide repeat (DPR) proteins

Restoration of the TBK1 Autophagy Pathways

Ahmad, L., et al., Human TBK1: A Gatekeeper of Neuroinflammation. Trends Mol Med, 2016. 22(6): p. 511-27.

Restoration of the TBK1 autophagy pathways

Through large DNA sequencing efforts, the scientific community has now been able to identify almost 30 different genes that can cause ALS. These genes code for proteins which are targets for the development of precision medicine for ALS. Interestingly, a number of these genes have pointed to key cellular processes which appear to be causal to the disease when disrupted such as the cellular waste clearance pathways, which are also called the autophagy and mitophagy pathways. It is through these waste clearance pathways that toxic protein buildups are removed from cells and through which old broken cellular components responsible for energy production are recycled. At this moment, 4 different genes have been identified in these pathways that cause the development of ALS: TBK1, Optineurin, p62 and Ubiquilin-2. Interestingly, these genes can also cause the development of frontotemporal dementia (FTD) and many ALS patients with mutations in these genes develop both ALS and FTD.

TBK1, a serine/threonine-protein kinase is a key regulator of the waste clearance (autophagy) pathways. TBK1 mutations are found 1-3% of all ALS and FTD patients. TBK1 directly regulates the ALS genes optineurin and P62 through phosphorylation. Mutations in TBK1 lead to a reduced function of the protein which means that the waste clearance pathways are only working at half speed. QurAlis has identified an enzyme which normally inhibits the autophagy pathways. An inhibitor of this enzyme will bring the waste clearance pathways back to normal functioning levels and QurAlis is developing a medicine to do just that. Through mouse studies we know that such a medicine is safe, and the study of human post mortem tissue and stem cell models have made clear that it will target the motor neurons and microglia which are affected in patients with ALS.

QurAlis is following a structure based drug design approach, which means that we use a crystallized form of the target protein to guide the chemistry processes to make a “smart” molecule which is specific and potent and doesn’t have problematic side effects. Last, QurAlis uses stem cells from ALS patients to make sure that our developed molecule actually works before turning it into a medicine.


Whether you or a loved one is battling ALS and you want to be a part of our clinical trials, or you want to invest in the fight against this debilitating disease, we want to hear from you. Fill out the form below today and we will get back to you as quickly as possible.

  • This field is for validation purposes and should be left unchanged.